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ABSTRACT 

 

Tyrosine kinases are key mediators in cellular signaling, governing essential processes such as 

growth, differentiation, metabolism, and apoptosis. In cancer, these kinases often become 

dysregulated due to mutations, overexpression, or autocrine-paracrine signaling, leading to 

uncontrolled cell proliferation and tumor development. Receptor tyrosine kinases (RTKs), a 

prominent subset, are frequently implicated in cancer, with many tumors exhibiting 

dependency on aberrant RTK signaling. This dependency has made RTKs a major focus for 

targeted cancer therapies, particularly through the development of small molecule tyrosine 

kinase inhibitors (TKIs). Despite the initial success of these inhibitors in clinical settings, the 

emergence of resistance remains a significant hurdle, often leading to relapse. Advances in 

technology are now facilitating the identification of novel RTK inhibitors, aiming to overcome 

resistance and improve therapeutic outcomes. This abstract highlight the importance of 

understanding the signal transduction mechanisms of tyrosine kinases and emphasizes their 

potential as therapeutic targets in the ongoing battle against cancer. 
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INTRODUCTION   

Significant advancements in cellular biology 

began in the early 1950s with the discovery 

of receptor tyrosine kinases (RTKs). Initially 

recognized as receptors for insulin and 

epidermal growth factor (EGF), RTKs soon 

became central to understanding cellular 

signaling systems. These receptors play 

crucial roles in various biological processes, 

including neuron development and cell 

proliferation, both in vivo and in vitro. By the 

1960s, research on insulin furthered 

understanding of its receptor interactions, 

leading to key insights into ligand-binding 

properties. The 1970s brought additional 

progress, as scientists mapped the binding 

sites of EGF on cell surfaces and linked 

protein phosphorylation on tyrosine residues 

with intracellular signaling, laying the 

groundwork for cancer research. By the early 

1980s, it was well-established that some 

receptors act as ligand-activated protein 

tyrosine kinases, underscoring the critical 

role of RTKs in cellular development, 

physiological functions, and cancer 

progression. 

Tyrosine kinases, including RTKs, are 

essential enzymes that mediate signal 

transduction processes in multicellular 

organisms, regulating cell proliferation, 

differentiation, migration, metabolism, and 

programmed cell death. These enzymes 

catalyze the phosphorylation of specific 

tyrosine residues in target proteins using 

ATP, a process vital for normal cellular 

communication and homeostasis. However, 

in cancer, tyrosine kinase signaling pathways 

are often genetically or epigenetically 
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altered, leading to deregulated cell 

proliferation and survival, which contribute 

to neoplastic development and progression. 

The discovery of the SRC oncogene with 

non-receptor tyrosine kinase activity and the 

identification of EGFR as the first receptor 

tyrosine kinase paved the way for 

understanding tyrosine kinases' role in 

cancer. With the completion of the Human 

Genome Project, over 90 tyrosine kinases 

have been identified, many of which are 

involved in cancer. 

The RTK family, which includes a diverse 

array of cell surface receptors, responds to 

growth factors, hormones, and cytokines, 

mediating essential cellular and metabolic 

signaling pathways. The extracellular 

domains of these receptors govern ligand 

binding, receptor activation, and subsequent 

signaling cascades, making RTKs crucial 

determinants of cellular responses. Their 

structural diversity, including features like 

immunoglobulin-like domains, cysteine-rich 

regions, and fibronectin type III repeats, 

leads to their classification into different 

families, each with unique ligand-binding 

capabilities. Aberrant signaling from tyrosine 

kinases, due to enhanced expression, 

mutation, or autocrine stimulation, 

transforms these enzymes into dominant 

oncoproteins that disrupt normal signaling 

networks. Consequently, the identification 

and development of therapeutic agents 

targeting these dysregulated kinases have 

become a central focus in cancer therapy, 

offering new avenues for treating various 

malignancies by inhibiting abnormal 

oncogenic signaling. 

 

BIOCHEMICAL BASIS OF TYROSINE 

KINASE SIGNALLING: 

Tyrosine kinases are enzymes that 

specifically phosphorylate tyrosine residues 

on different substrates. Receptor tyrosine 

kinases (RTKs) are activated when ligands 

bind to their extracellular domains. Ligands, 

such as EGF and PDGF, are extracellular 

signaling molecules that induce receptor 

dimerization (except for the insulin receptor, 

which is pre-dimerized). Different ligands 

use various strategies to achieve stable 

dimeric conformations. For instance, some 

ligands bind to two receptor molecules to 

form a 1:2 ligand-to-receptor complex, like 

growth hormone with its receptor. In other 

cases, two ligands bind simultaneously to 

two receptors, forming a 2:2 ligand-to-

receptor complex, as seen with VEGF and 

VEGFR, which represents a straightforward 

mechanism for receptor dimerization. 

Receptor dimerization is also stabilized by 

direct interactions between the receptors. In 

some complexes, ligand binding alone is 

insufficient for stabilization, requiring 

additional molecules; for example, FGFs 

require heparan sulfate proteoglycans 

(HSPGs) to stabilize and activate FGFR 

complexes. Ligand binding to the 

extracellular domain promotes the formation 

of active dimers, leading to the activation of 

the receptor's protein tyrosine kinase 

function. 

Structural studies of the catalytic core of 

several RTKs, along with biochemical and 

kinetic studies of receptor phosphorylation, 

have shown that receptor oligomerization 

increases the local concentration of RTKs. 

This clustering facilitates efficient 

transphosphorylation of tyrosine residues in 

the activation loop of the catalytic domain. 

Upon tyrosine phosphorylation, the 

activation loop changes to an open 

conformation, allowing ATP and substrates 

to access the active site. This enables the 

transfer of phosphate groups from Mg-ATP 

to tyrosine residues on the receptor itself and 

on cellular proteins involved in downstream 

signaling pathways. 

The ATP-binding intracellular catalytic 

domain responsible for receptor 

autophosphorylation is highly conserved 

among RTKs. The ATP binding site acts as a 

docking site for cytoplasmic signaling 

proteins containing Src homology-2 (SH2) 

and protein tyrosine binding (PTB) domains. 

These signaling proteins recruit additional 

effector molecules with SH2, SH3, PTB, and 

Pleckstrin homology (PH) domains, forming 

signaling complexes at the activated receptor 

and membrane. This assembly activates a 
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cascade of intracellular biochemical signals 

that ultimately regulate the expression of 

various genes, defining the biological 

response to the initial signal. 

During the signaling process, receptors move 

within the plasma membrane and are 

internalized through clathrin-coated pits, 

which form endocytic vesicles. These 

vesicles may fuse with lysosomes, where the 

receptor and ligand can be degraded by 

lysosomal enzymes. In some cases, receptors 

are recycled back to the cell surface. 

Throughout receptor internalization, the 

ligand-receptor complex dissociates, leading 

to the termination of the signaling reaction. 

 

PHYSIOLOGICAL PATHWAYS OF 

RECEPTOR TYROSINE KINASE 

ACTIVATION: 

Receptor Tyrosine Kinases (RTKs) are 

activated by receptor-specific ligands, 

typically growth factors. These ligands bind 

to the extracellular regions of RTKs, 

inducing receptor dimerization or 

oligomerization. This binding results in 

conformational changes that enable trans-

autophosphorylation of the tyrosine kinase 

domains (TKDs) and the release of cis-

autoinhibition. The conformational change 

allows the TKD to adopt an active state. 

Autophosphorylation also recruits and 

activates various downstream signaling 

proteins that contain Src homology-2 (SH2) 

or phosphotyrosine-binding (PTB) domains, 

which bind to specific phosphotyrosine 

residues within the receptor and propagate 

critical cellular signaling pathways. 

 

Modes of RTK Dimerization 

RTK dimerization can occur through four 

distinct modes: 

Ligand-Mediated Dimerization: Receptor 

dimerization occurs solely through ligand 

binding, without direct interaction between 

the extracellular regions of the receptors. An 

example is TrkA (NGF receptor). 

Receptor-Mediated Dimerization: 

Dimerization occurs without direct 

interaction between activating ligands, as 

seen in the ErbB family members (e.g., 

EGFR, HER2/ErbB2, HER3/ErbB3, and 

HER4/ErbB4).  

Ligand Homodimer Binding: Homodimers 

of the ligand bind to two receptor molecules, 

which then interact across the dimer 

interface. KIT (SCF receptor) is an example 

of this mode. 

Accessory Molecule Participation: In 

addition to bivalent ligand binding and direct 

receptor-receptor contacts, accessory 

molecules like heparin or heparan sulfate are 

involved in receptor dimerization. The FGFR 

family of RTKs exemplifies this mode. 

Notably, some RTKs can form dimers or 

high-order oligomers even in the absence of 

activating ligands. For instance, EGFR 

predominantly exists as monomers before 

ligand binding, while the insulin receptor 

(IR) exists as pre-formed dimers. Ligand 

binding shifts the equilibrium towards active 

dimerization, either by stabilizing pre-

formed dimers or inducing conformational 

changes in inactive dimers. 

 

Activation of ErbB Family RTKs 

The ErbB family of RTKs is of particular 

interest in cancer biology. The extracellular 

regions of ErbB receptors contain four 

subdomains (I-IV). In the absence of ligands, 

the intracellular TKD is inactive, and the 

extracellular region adopts a “tethered” 

configuration. The dimerization arm (a β-

hairpin within subdomain II) is buried by 

intra-molecular interactions with domain IV, 

forming intra-molecular autoinhibitory 

interactions. Ligand binding to subdomains I 

and III induces a conformational change that 

extends the extracellular region and exposes 

the previously buried dimerization arm. This 

exposure facilitates receptor dimerization 

and triggers intracellular conformational 

changes that enable kinase activation. 

Activation of Intracellular Tyrosine Kinase 

Domains 

Before activation, the TKD is in a state of cis-

autoinhibition due to specific intra-molecular 

interactions unique to each receptor: 

FGFR, IR, and IGF-1R: Autoinhibited by the 

activation loop, which disrupts ATP and 

substrate binding. 
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KIT and Eph Receptors: Regulated by 

juxtamembrane autoinhibition, where the 

juxtamembrane region interacts with the 

active site of the kinase. 

TEK, MET, and RON: The C-terminal tail 

inhibits the active site of the TKD, stabilizing 

an inactive conformation. 

Ligand-induced dimerization causes trans-

phosphorylation of key tyrosine residues, 

destabilizing these autoinhibitory 

interactions and allowing the kinase to 

assume an active conformation. 

For the ErbB family, kinase activation occurs 

through an allosteric mechanism: the C-lobe 

of one kinase domain (the ‘activator’) 

contacts the N-lobe of the other kinase 

domain (the ‘receiver’). This interaction 

induces conformational changes in the 

receiver kinase, activating it and causing 

trans-phosphorylation of tyrosine residues in 

the activator. Notably, phosphorylation of the 

activation loop is not involved in this 

mechanism. 

 

Mechanism of Downstream Signaling 

Autophosphorylation of RTKs leads to the 

recruitment of various downstream signaling 

proteins. Most of these proteins contain SH2 

or PTB domains that bind to the 

phosphorylated tyrosine residues on RTKs. 

These proteins can be recruited directly or 

through docking proteins that serve as 

assembly platforms. Docking proteins bind 

to RTKs via their PTB domains and recruit 

additional signaling molecules. The presence 

of multiple phosphotyrosines and docking 

proteins enables RTKs to activate a range of 

signaling pathways, including RAS/MAPK, 

PI-3 K/AKT, and JAK2/STAT signaling. 

RTKs thus act as crucial nodes in transferring 

extracellular signals to the cell nucleus, 

regulating cell growth, migration, and other 

processes. 

 

Summary 

In-depth structural and biochemical studies 

have elucidated the complex mechanisms of 

RTK activation. Understanding these 

mechanisms is crucial for grasping how 

oncogenic mutations in RTKs disrupt normal 

signaling, leading to dysregulation of cell 

growth and tumor development. 

 

CLASSIFICATION 

Tyrosine kinases are primarily categorized 

into two groups: receptor tyrosine kinases 

(RTKs) and non-receptor tyrosine kinases 

(NRTKs). 

 

Receptor Tyrosine Kinases (RTKs) 

RTKs are cell surface transmembrane 

receptors that also function as enzymes with 

kinase activity. Structurally, RTKs consist of 

three main components: 

 

Extracellular Domain 

This domain is responsible for ligand binding 

and specificity. It often includes multiple 

domains that interact with various ligands. 

Transmembrane Helix 

A single-pass hydrophobic helix that spans 

the cell membrane. 

 

Cytoplasmic Domain 

Contains the tyrosine kinase domain and 

regulatory sequences at both the N- and C-

terminal ends. The kinase domain is crucial 

for the enzymatic activity of RTKs, which 

involves the phosphorylation of tyrosine 

residues on target proteins. 

Activation of RTKs occurs through ligand 

binding to the extracellular domain, leading 

to receptor dimerization. This dimerization 

facilitates trans-phosphorylation within the 

cytoplasmic domain, which in turn activates 

the kinase activity of the receptors. 

 

Non-Receptor Tyrosine Kinases (NRTKs) 

NRTKs are cytoplasmic proteins and exhibit 

significant structural variability. Key features 

of NRTKs include: 

 

Kinase Domain 

Similar to RTKs, the kinase domain of 

NRTKs spans approximately 300 residues 

and includes: 

N-terminal Lobe: Comprising a five-

stranded β-sheet and one α-helix. 

C-terminal Lobe: A large, mainly α-helical 

domain. ATP binds in the cleft between these 
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two lobes, and the tyrosine-containing 

sequence of protein substrates interacts with 

residues in the C-terminal lobe. 

 

Additional Domains 

NRTKs often contain several additional 

signaling or protein-protein interacting 

domains, such as SH2 (Src Homology 2), 

SH3 (Src Homology 3), and PH (Pleckstrin 

Homology) domains. 

The activation mechanism of NRTKs is more 

complex compared to RTKs. It typically 

involves interactions with other proteins to 

enable trans-phosphorylation, rather than 

direct ligand binding and receptor 

dimerization. 

 

ACTIVATION OF TYROSINE KINASE 

BY ONCOGENIC MUTATIONS 

Under normal physiological conditions, 

receptor tyrosine kinase (RTK) activity is 

carefully regulated by various mechanisms, 

including the action of tyrosine 

phosphatases. However, RTKs can acquire 

oncogenic potential through several 

pathways, ultimately disrupting the balance 

between cell proliferation and apoptosis. 

Dysregulated RTK signaling, especially 

when considering temporal and spatial 

factors, adds further complexity to this 

process. Continuous activation of RTKs can 

endow normal cells with cancerous 

properties, leading to RTK-driven 

oncogenesis. There are four main 

mechanisms that can cause persistent RTK 

activation in human cancers: gain-of-

function mutations, gene amplification, 

chromosomal rearrangements, and autocrine 

signaling. This discussion will focus on these 

four mechanisms, highlighting a specific 

intragenic event known as kinase domain 

duplication (KDD). 

1. Activation by Gain of Function 

Mutations 

Mutations in receptor tyrosine kinases 

(RTKs) can lead to constitutive activity, 

driving cancer progression. For instance, the 

EGFRvIII mutant lacks amino acids 6-273, 

resulting in receptor activity without ligand 

binding, which contributes to uncontrolled 

cell proliferation in glioblastomas, ovarian 

tumors, and non-small cell lung carcinoma. 

Similarly, point mutations in the FGFR3 

extracellular domain lead to an unpaired 

cysteine residue, promoting abnormal 

receptor dimerization through intermolecular 

disulfide bonding, observed in multiple 

myeloma. Somatic mutations in EGFR2 and 

EGFR3 are associated with human bladder 

and cervical carcinomas. 

2. Overexpression and Genomic 

Amplification 

Overexpression of RTKs and their ligands 

can cause constitutive activation through 

autocrine or paracrine loops. In several 

cancers, such as non-small cell lung cancer, 

bladder cancer, breast cancer, and 

glioblastoma multiforme, there is a strong 

association between the overexpression of 

EGFR and its ligands EGF and TGFα. 

Increased EGFR expression is reported in 40-

80% of non-small cell lung cancers and 50% 

of primary lung cancers, with TGFα 

involvement in 20-40% of lung cancers. 

PDGFR and its ligands PDGF-A and PDGF-

B are overexpressed in astrocytic brain 

tumors and gliomas. Elevated expression of 

IGFR and its ligands IGF I and IGF II 

contributes to the pathogenesis of breast 

cancer, prostate cancer, and small cell lung 

cancer, with elevated IGF-I receptor activity 

noted in breast cancer and increased IGF-I 

plasma levels linked to higher prostate cancer 

risk. 

3. Chromosomal Rearrangements 

Chromosomal rearrangements are a 

significant mechanism of RTK deregulation. 

In chronic myelogenous leukemia (CML), a 

reciprocal translocation between 

chromosomes 9 and 22 forms the 

Philadelphia chromosome, resulting in the 

BCR-ABL fusion gene. This gene encodes a 

210 KDa mutant protein with increased 

tyrosine kinase activity, correlating with the 

CML phenotype. A different BCR-ABL 

fusion protein (185 KDa) is observed in 10% 

of adult acute lymphoblastic leukemia (ALL) 

cases. The TEL-ABL fusion gene, arising 

from a translocation t(9;12), is another 

example, leading to a protein with 
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constitutive kinase activity in ALL and CML 

with a complex karyotype (t(9;12;14)). Other 

notable translocations include TEL-PDGFR 

(t(5;12)) in chronic myelomonocytic 

leukemia (CMML) and NPM-ALK (t(2;5)) 

in anaplastic large cell lymphoma, both 

causing constitutive kinase activation. 

Constitutive activation by kinase domain 

duplication: 

Intragenic partial duplication is a type of 

chromosomal rearrangement that allows 

cancer cells to develop new protein isoforms. 

A specific example of this is kinase domain 

duplications (KDDs), which provide a 

unique mechanism for activating receptor 

tyrosine kinases (RTKs) in tumors. 

Oncogenic EGFR-KDD and BRAF-KDD 

have been documented in various human 

cancers and have shown specific responses to 

targeted therapies against EGFR and BRAF. 

Recently, our research team found that 

EGFR-KDD is a recurrent alteration in non-

small cell lung cancer (NSCLC). This 

duplication was also observed in other 

cancers such as gliomas, sarcomas, and 

Wilms' tumor. Similarly, BRAF-KDD has 

been identified in gliomas and advanced 

acinic cell tumors. Even though BRAF is a 

serine/threonine kinase, it is relevant here to 

illustrate the concept. 

A recent study analyzed genomic data from 

114,200 human tumors and identified 

recurrent KDDs in multiple kinases, 

including the ErbB family (EGFR, ERBB2, 

and ERBB4), the FGFR family (FGFR1, 

FGFR2, and FGFR3), the NTRK family 

(NTRK1 and NTRK2), and the PDGFR 

family (PDGFRA and PDGFRB), along with 

other kinases such as BRAF, RET, MET, 

ROS1, ALK, and KIT. In brain tumors, 

KDDs most frequently involved EGFR, 

BRAF, PDGFRA, and FGFR3, while in 

extracranial tumors, KDDs were more 

common in RET, MET, and ALK genes. 

Overall, KDD alterations were found in 

about 0.62% of the cases (598 KDDs out of 

114,200 cases). 

In nature, gene duplication is a mechanism 

that can provide genetic diversity or 

redundancy, allowing organisms to adapt to 

different environmental conditions. 

Similarly, in cancer cells, KDDs might be 

selected for as a response to the selective 

pressure from cancer therapies. For instance, 

BRAF-KDD has been identified as a new 

mechanism of resistance to BRAF inhibitors 

in melanoma patients. The detection of 

EGFR-KDD amplification in post-treatment 

biopsies suggests its role in acquired 

resistance to the EGFR tyrosine kinase 

inhibitor (TKI), afatinib. 

The most extensively studied KDD so far is 

EGFR-KDD. Normally, wild-type EGFR 

activation by its ligands involves the 

formation of an asymmetric dimer between 

two receptor molecules. However, EGFR-

KDD, which contains two in-frame tyrosine 

kinase domains arranged in tandem, may 

activate through constitutive intra-molecular 

dimerization, leading to ligand-independent 

signaling. Preclinical studies, both in silico 

and in vitro, have confirmed this potential 

activation mechanism. This differs from the 

activation mechanisms of other EGFR kinase 

domain mutants, such as L858R and exon 19 

deletions, highlighting how genomic 

alterations can change protein structure and 

function to create oncogenic variants. 

For BRAF-KDD, most genomic breakpoints 

occur within intron 9 of BRAF, resulting in a 

truncated protein capable of dimerizing in a 

RAS-independent manner. This suggests that 

different KDDs may use distinct activation 

mechanisms, underscoring the need for 

systematic functional studies of each novel 

KDD within RTKs to fully understand the 

RTK activation paradigm. 

4. Autocrine Activation 

Autocrine and paracrine stimulation is a key 

mechanism for RTK activation, particularly 

when the receptor and its ligand are 

abnormally or overexpressed together. EGFR 

and its primary ligands, EGF and TGFα, 

exhibit strong autocrine loops in many 

cancers, including non-small cell lung 

cancer, bladder cancer, breast cancer, and 

glioblastoma multiforme. PDGFR and its 

ligands (PDGF-A and PDGF-B) show 

similar co-expression in astrocytic brain 

tumors and gliomas. Insulin-like growth 
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factor receptors (IGFR) and their ligands 

(IGF I and IGF II) participate in autocrine 

loops contributing to the development of 

breast cancer, prostate cancer, and small cell 

lung cancer. 

 

TYROSINE KINASE IN CANCER 

TREATMENT 

The role of tyrosine kinases in cancer 

pathogenesis is substantial, and these 

enzymes have recently gained attention as 

potential targets for anticancer drugs. With 

the advancements from the Human Genome 

Project, the complexity and number of 

tyrosine kinases have increased, offering new 

avenues for drug discovery. Recent insights 

into cancer biology have revealed that many 

tyrosine kinases are located upstream or 

downstream of significant oncogenes or 

tumor suppressor genes, particularly receptor 

tyrosine kinases. 

 

Targeting Sites 

The field of cancer research saw significant 

progress following the enactment of The 

National Cancer Act (1971) by President 

Richard Nixon. By the late 1980s, there was 

evidence supporting the use of low molecular 

weight tyrosine kinase inhibitors. These 

inhibitors can interfere with either ligand 

binding (for receptor tyrosine kinases) or 

with protein substrates (for non-receptor 

tyrosine kinases). Despite early promise, 

bisubstrate inhibitors and non-competitive or 

allosteric inhibitors have seen limited 

practical success. ATP-competitive inhibitors 

have become the preferred approach. 

 

ATP Binding Site 

ATP binds within a cleft formed between the 

two lobes of the tyrosine kinase domain. 

Although the ATP binding site is highly 

conserved, the regions around it offers 

diversity that can be exploited for drug 

design. Key features of the ATP binding site 

include: 

 

Adenine Region: Contains two critical 

hydrogen bonds involving the N-1 and N-6 

amino groups of the adenine ring, which 

many potent inhibitors target. 

Sugar Region: Typically hydrophilic, with 

some exceptions such as EGFR. This region, 

along with the hydrophobic pocket, plays a 

role in inhibitor selectivity. 

Hydrophobic Channel: Not utilized by ATP 

but can be targeted to enhance inhibitor 

specificity. 

Phosphate Binding Region: Can be 

leveraged to improve the selectivity of 

inhibitors. 

 

Small Molecule Inhibitors 

Tyrosine kinases are crucial in many 

oncoproteins, making them key targets for 

cancer therapy. Low molecular weight 

inhibitors, known as tyrphostins, have shown 

promise in blocking cell proliferation. By the 

late 1980s, it was demonstrated that low 

molecular weight EGFR inhibitors could 

inhibit EGF-dependent cell growth. Research 

has since revealed that some tyrosine kinase 

inhibitors are ATP mimics. Many tyrphostins 

with aromatic rings can be converted into 

ATP mimics by incorporating specific 

structures. ATP mimics often have at least 

two aromatic rings. The evolutionary 

conservation of the ATP binding site allows 

for selective targeting due to minor 

differences in the kinase domain, which 

affect hydrogen bonding and hydrophobic 

interactions. Successful tyrosine kinase 

inhibitors include Gleevec, Iressa, and 

Tarceva. Gleevec (Imatinib mesylate) is 

effective against CML and c-kit positive 

metastatic GIST by selectively inhibiting the 

BCR-ABL fusion protein. Iressa targets the 

EGF receptor tyrosine kinase in non-small 

cell lung cancer and squamous cell 

carcinoma. The mTOR pathway, involved in 

abnormal cellular growth, is inhibited by 

rapamycin and CCI779, which are currently 

in phase II trials. 

 

Monoclonal Antibodies 

The extracellular domain of receptor tyrosine 

kinases is a prime target for monoclonal 

antibodies. Advances in genomics have 

facilitated the design and production of 
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therapeutic monoclonal antibodies, including 

humanized, human chimeric, or bispecific 

antibodies. The EGFR family, which 

includes EGFR/ErbB1, HER-2/ErbB2, HER-

3/ErbB3, and HER-4/ErbB4, plays a 

significant role in cancer biology. 

Overexpression of EGFR and HER-2 is 

associated with several cancers. Herceptin 

(Trastuzumab) is a notable example of a 

targeted therapy for HER-2 positive breast 

cancer. It inhibits cell cycle progression and 

induces an immune response. Rituximab 

targets CD20 and is effective against Non-

Hodgkin's Lymphoma. 

EGFR overexpression is common in various 

cancers, and monoclonal antibodies like 

C225 (cetuximab) and 2C4 target specific 

EGFR family members. Anti-VEGF 

monoclonal antibodies, which block 

angiogenesis, are also promising for cancer 

therapy. Antibodies targeting overexpressed 

antigens, like the P12 antigen, may offer new 

treatment options. 

 

Hsp90 and Novel Strategies 

Heat shock proteins (Hsp) are crucial for 

maintaining cellular homeostasis and protein 

folding, and their accumulation is often seen 

in tumors. Inhibitors targeting Hsp90 can 

destabilize kinases and promote their 

degradation, reducing kinase levels. Notable 

examples include Geldanamycin, Cisplatin, 

and Radicol, which affect various oncogenic 

proteins. 

 

Antibody-Drug Conjugates 

Immunotherapy is gaining traction, with 

efforts to enhance the efficacy of antibodies 

by conjugating them with toxins. 

Immunotoxins, such as DAB389EGF, 

combine specific antibodies with diphtheria 

toxin to target cancer cells. Other antibody-

drug conjugates, like Tositumomab and anti-

Tac(Fv)-PE38(LMB-2), show promise in 

treating lymphomas and other cancers. 

Advances in genomics and proteomics are 

driving the development of more effective 

antibody-drug conjugates. 

 

 

Antisense Strategies and Peptide Drugs 

Antisense oligonucleotides are designed to 

bind to mRNA and block protein translation. 

For instance, antisense 

oligodeoxynucleotides targeting IGF-1R 

have shown efficacy in melanoma and breast 

cancer. Peptides and peptidomimetics that 

interfere with protein-protein interactions, 

such as those targeting Grb2-Sos 

interactions, are also being explored as 

potential therapies. 

 

Angiogenesis Inhibitors 

Angiogenesis, the formation of new blood 

vessels from existing ones, is crucial for 

tumor growth and metastasis. Targeting 

angiogenesis can be an effective cancer 

treatment strategy. Inhibitors like SU5416 

and PD173074 target VEGF and FGFR1, 

while PD98059 inhibits the MAPK cascade. 

Antiangiogenic therapies help limit tumor 

blood supply, reducing growth and spread, 

and may offer long-term treatment benefits 

due to reduced drug resistance. 

 

FUTURE CHALLENGES 

Receptor tyrosine kinases (RTKs) are central 

to cancer progression, and targeting 

oncogenic mutations within these kinases has 

significantly advanced cancer treatment. 

While this manuscript does not provide a 

comprehensive review of all RTK inhibitors, 

it is notable that numerous small-molecule 

inhibitors have been created to address 

cancers and other conditions associated with 

RTK mutations. These inhibitors primarily 

act on the ATP-binding site of the tyrosine 

kinase domain. The FDA has also approved 

several monoclonal antibodies that inhibit 

RTK activation, such as cetuximab for lung 

cancer, panitumumab for colon cancer, 

cetuximab for head and neck cancer, and 

trastuzumab and pertuzumab for breast 

cancer. The integration of these targeted 

therapies, including tyrosine kinase 

inhibitors (TKIs) and monoclonal antibodies, 

has marked a significant shift toward 

precision medicine in oncology. Despite 

these advancements, the emergence of 

acquired resistance to these therapies is a 
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common challenge. Resistance can arise due 

to genetic mutations or the activation of 

alternative signaling pathways. To address 

this issue, new strategies have been 

developed, such as second-generation and 

third-generation inhibitors, as well as the 

combination of TKIs with monoclonal 

antibodies targeting the same RTK. 

 

CONCLUSION 

Tyrosine kinases play a crucial role in 

regulating cellular growth and 

differentiation, and their dysfunction is 

implicated in various human cancers. The 

success of tyrosine kinase inhibitors such as 

Gleevec, Iressa, and Herceptin highlights 

their potential in clinical settings. Numerous 

tyrosine kinase inhibitors are currently in 

clinical trials, and many more are under 

development. However, these therapies are 

primarily effective against cancers with 

specific kinase alterations, posing challenges 

for their broader application. To address 

these challenges, there is a need for rapid 

identification of clinically relevant, 

druggable tyrosine kinase targets, along with 

more efficient lead discovery and 

optimization. Advances in high-throughput 

cancer genomics and molecular therapeutics 

are essential to making progress in this area. 

Such efforts could ultimately lead to the 

development of personalized cancer 

treatments tailored to individual patient 

profiles. 
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